Course Code	Credit Hours
MATH-212	3-0

Course Description

This course provides a comprehensive exploration of the geometry of Euclidean space, coupled with a detailed study of calculus concepts and applications. Students will investigate vector analysis functions, limits, continuity, differentiation, integration, sequences, and series. The course emphasizes the geometrical interpretation of mathematical concepts and their practical applications, making it suitable for students pursuing studies in civil engineering.

Text Book:

- 1. Thomas Calculus by George B. Thomas Jr., Maurice D. Weir and Joel R. Hass
- 2. Calculus by Earl Swokowski, Michael Olinick, and Dennis D. Pence
- 3. Calculus by Robert T. Smith & Ronald B. Minton
- 4. Calculus: Early Transcendentals by James Stewart
- 5. Calculus and Analytic Geometry by George B. Thomas Jr. and Ross L. Finney

Reference Book:

Prerequisites :

Nil.

	Without Project	With Project/Complex
	(%)	Engineering Problems (%)
Quizzes	15	10-15
Assignments	10	5-10
Mid Terms	25	25
Project	-	5-10
End Semester Exam	50	45-50

ASSESSMENT SYSTEM FOR THEORY

ASSESSMENT SYSTEM FOR LAB

Lab Work/ Psychomotor Assessment/ Lab Reports	70%
Lab Project/ Open Ended Lab Report/ Assignment/ Quiz	10%
Final Assessment/ Viva	20%

<u>Teaching Plan</u>

Week No	Topics/Learning Outcomes
1-2	Introduction to Advanced Calculus, Objectives, Outcomes and Assessment
	Methods, Review of vectors, scalars and vector products, equations of
	straight line and plane
3-4	Functions of single and several variables, techniques of finding limits and
	continuity, Parametric Representation of Curves, Tangent and Normal to the
	curve
5-6	Introduction to ordinary and partial derivatives, Chain Rule with single and
	several variables, Techniques of finding ordinary derivatives, examples of
	related rates, Directional Derivatives
7-8	Extrema of functions of single variable, First and second derivative tests,
	Optimization problems of functions of single variable
0	MSE
9	
10-11	Extrema of functions of several variables, Optimization problems of
	functions of several variable (Lagrange multipliers), Introduction to
	integration, Properties and techniques of integration
12-13	Definite integrals, Double integrals, Change of order of integration, Triple
	integrals, Area under and between the curves
4445	Volumes of solids of revolution by disk and Masher reathed Mark Dans
14-15	Volumes of solids of revolution by disk and washer method, work Done,
	Moment of Inertia, Power series and applications
16	Maclaurin/ Taylor series and their applications
17-18	End Semester Exam
17 10	

Practical: Nil.